

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1H-Pyrazol-2-ium hydrogen oxalate

Chun-Hua Yu* and Run-Qiang Zhu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhurunqiang@163.com

Received 6 May 2012; accepted 21 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.095; wR factor = 0.285; data-to-parameter ratio = 15.1.

In the title compound, $C_3H_5N_2^+C_2HO_4^-$, the anions form centrosymmetric dimers through cyclic $O-H\cdots O$ hydrogenbonding associations [graph set $R_2^2(10)$]. These dimers are then linked through a cyclic $R_4^2(10) N-H\cdots O$ hydrogen-bonding association involving two cations and the carboxyl O-atom acceptors of separate anions, giving chain structures extending across the (111) plane.

Related literature

For general background to ferroelectric organic frameworks, see: Fu *et al.* (2009); Ye *et al.* (2006); Zhang *et al.* (2008, 2010). For graph-set analysis, see: Etter *et al.* (1990).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_3H_5N_2^+ \cdot C_2HO_4^-} \\ {M_r} = 158.12 \\ {\rm Triclinic, } \ P\overline{1} \\ a = 3.7286 \ (7) \ {\rm \AA} \\ b = 9.836 \ (2) \ {\rm \AA} \\ c = 10.487 \ (2) \ {\rm \AA} \\ \alpha = 117.35 \ (3)^\circ \\ \beta = 97.01 \ (3)^\circ \end{array}$

 $\gamma = 93.65 (3)^{\circ}$ $V = 335.92 (14) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.14 \text{ mm}^{-1}$ T = 293 K $0.26 \times 0.22 \times 0.14 \text{ mm}$ 3484 measured reflections

 $R_{\rm int} = 0.063$

1527 independent reflections

702 reflections with $I > 2\sigma(I)$

Data collection

Rigaku SCXmini CCD

```
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
T_{min} = 0.965, T_{max} = 0.993
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.095$	101 parameters
$wR(F^2) = 0.285$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
1527 reflections	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1^{i}$ $N2 - H2A \cdots O1^{ii}$ $D4 - H4 \cdots O3^{iii}$	0.86	1.86	2.709 (5)	170
	0.86	1.92	2.715 (5)	153
	0.82	1.95	2.679 (5)	147

Symmetry codes: (i) x + 1, y - 1, z; (ii) -x + 2, -y + 1, -z + 1; (iii) -x, -y + 1, -z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

This work was supported by Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2209).

References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.
- Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.
- Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

supplementary materials

Acta Cryst. (2012). E68, o1911 [doi:10.1107/S1600536812023136]

1H-Pyrazol-2-ium hydrogen oxalate

Chun-Hua Yu and Run-Qiang Zhu

Comment

As a contribution to a search for new ferroelectric materials (Fu *et al.*, 2009; Ye *et al.*, 2006; Zhang *et al.*, 2008, 2010), we have synthesized the title salt, $C_3H_5N_2^+$. $C_2HO_4^-$ from a 1:1 stoichiometric reaction of pyrazole with oxalic acid and the structure is reported here.

In the structure of the title compound (Fig.1) the molecules are organized in a one-dimensional chain structure involving both inter-anionic and cation–anion hydrogen-bonding associations (Table 1). The anions form centrosymmetric dimers through cyclic O—H···O hydrogen-bonding associations [graph set $R^2_2(10)$ (Etter *et al.*, 1990)]. These dimers are then linked through a cyclic $R^2_4(10)$ N—H···O hydrogen-bonding association involving two cations and the carboxyl O-atom acceptors of separate anions, giving one-dimensional chain structures extending across the (111) plane (Fig. 2).

Experimental

A mixture of pyrazole (0.68 g, 10 mmol) and oxalic acid (0.95 g, 10 mmol) in water was stirred for several days at ambient temperature. Colourless crystal plates of the title compound suitable for X-ray analysis were obtained.

Refinement

Hydrogen atom positions were calculated and allowed to ride on their parent atoms with aromatic C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Computing details

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear* (Rigaku, 2005); data reduction: *CrystalClear* (Rigaku, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure and atom-numbering scheme for the title compound, with the displacement ellipsoids drawn at the 30% probability level.

Figure 2

The packing of the title compound in the unit cell viewed down the *a* axis. Hydrogen bonds are shown as dashed lines.

1*H*-Pyrazol-2-ium hydrogen oxalate

Crystal data	
$C_3H_5N_2^+ \cdot C_2HO_4^-$	Z = 2
$M_r = 158.12$	F(000) = 164
Triclinic, P1	$D_{\rm x} = 1.563 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 3.7286 (7) Å	Cell parameters from 1527 reflections
b = 9.836 (2) Å	$\theta = 2.4 - 27.5^{\circ}$
c = 10.487 (2) Å	$\mu=0.14~\mathrm{mm}^{-1}$
$\alpha = 117.35 \ (3)^{\circ}$	T = 293 K
$\beta = 97.01 \ (3)^{\circ}$	Sheet, colourless
$\gamma = 93.65 \ (3)^{\circ}$	$0.26 \times 0.22 \times 0.14 \text{ mm}$
$V = 335.92 (14) Å^3$	

Data collection

Rigaku SCXmini CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator CCD_Profile_fitting scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{min} = 0.965, T_{max} = 0.993$ Refinement	3484 measured reflections 1527 independent reflections 702 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.9^{\circ}$ $h = -4 \rightarrow 4$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.095$	Hydrogen site location: inferred from
$wR(F^2) = 0.285$	neighbouring sites
S = 1.07	H-atom parameters constrained
1527 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1349P)^2 + 0.0952P]$
101 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.29 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R* factors *R* are based on *F* with *F* sat to zero for pagative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	1.0872 (11)	0.0136 (5)	0.3057 (4)	0.0416 (11)	
H1A	1.1595	-0.0585	0.3230	0.050*	
N2	1.1523 (11)	0.1643 (5)	0.3992 (4)	0.0412 (11)	
H2A	1.2729	0.2054	0.4865	0.049*	
C1	0.9992 (15)	0.2395 (6)	0.3352 (6)	0.0493 (15)	
H1	1.0047	0.3461	0.3773	0.059*	
C2	0.8307 (15)	0.1355 (7)	0.1967 (6)	0.0505 (15)	
H2	0.7020	0.1567	0.1277	0.061*	
C3	0.8931 (15)	-0.0076 (7)	0.1818 (6)	0.0477 (14)	
Н3	0.8131	-0.1021	0.0993	0.057*	
01	0.3997 (10)	0.8001 (4)	0.3600 (3)	0.0475 (10)	
O2	0.6353 (11)	0.5351 (4)	0.3418 (4)	0.0577 (12)	
03	0.0807 (11)	0.6588 (4)	0.1355 (4)	0.0581 (11)	
O4	0.3270 (11)	0.4012 (4)	0.1179 (4)	0.0554 (11)	
H4	0.1905	0.4187	0.0612	0.083*	
C4	0.2907 (14)	0.6762 (6)	0.2446 (5)	0.0402 (13)	
C5	0.4374 (14)	0.5304 (6)	0.2400 (5)	0.0425 (13)	

	1711	<i>L</i> /22	<i>I</i> /33	1712	<i>L /</i> ¹³	L /23
	0	0	0	0		0
N1	0.049 (3)	0.033 (2)	0.041 (2)	0.0045 (19)	-0.0029 (19)	0.019 (2)
N2	0.048 (3)	0.034 (2)	0.031 (2)	0.005 (2)	-0.0023 (19)	0.0087 (19)
C1	0.053 (3)	0.045 (3)	0.056 (4)	0.011 (3)	0.006 (3)	0.029 (3)
C2	0.053 (4)	0.052 (4)	0.048 (3)	0.010 (3)	-0.002 (3)	0.027 (3)
C3	0.047 (3)	0.042 (3)	0.041 (3)	0.004 (2)	-0.006 (2)	0.011 (3)
01	0.062 (2)	0.033 (2)	0.037 (2)	0.0087 (17)	-0.0074 (17)	0.0110 (18)
02	0.076 (3)	0.043 (2)	0.045 (2)	0.0122 (19)	-0.0127 (19)	0.018 (2)
03	0.077 (3)	0.042 (2)	0.044 (2)	0.0123 (19)	-0.0126 (19)	0.0155 (19)
O4	0.075 (3)	0.032 (2)	0.045 (2)	0.0098 (19)	-0.0082 (19)	0.0113 (19)
C4	0.047 (3)	0.032 (3)	0.035 (3)	0.005 (2)	0.005 (2)	0.011 (2)
C5	0.050 (3)	0.033 (3)	0.039 (3)	0.003 (2)	0.004 (3)	0.013 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C3	1.325 (6)	C2—H2	0.9300
N1—N2	1.333 (5)	С3—Н3	0.9300
N1—H1A	0.8601	O1—C4	1.256 (6)
N2C1	1.319 (6)	O2—C5	1.202 (6)
N2—H2A	0.8600	O3—C4	1.239 (6)
C1—C2	1.372 (7)	O4—C5	1.317 (6)
C1—H1	0.9300	O4—H4	0.8200
C2—C3	1.380 (8)	C4—C5	1.549 (7)
C3—N1—N2	109.3 (4)	C3—C2—H2	127.4
C3—N1—H1A	125.3	N1—C3—C2	108.0 (5)
N2—N1—H1A	125.4	N1—C3—H3	126.0
C1—N2—N1	108.4 (4)	С2—С3—Н3	126.0
C1—N2—H2A	125.8	С5—О4—Н4	109.5
N1—N2—H2A	125.8	O3—C4—O1	127.0 (5)
N2-C1-C2	109.1 (5)	O3—C4—C5	117.3 (4)
N2	125.4	O1—C4—C5	115.7 (4)
C2-C1-H1	125.4	O2—C5—O4	122.4 (5)
C1—C2—C3	105.2 (5)	O2—C5—C4	122.1 (5)
C1—C2—H2	127.4	O4—C5—C4	115.4 (4)
C3—N1—N2—C1	0.1 (6)	O3—C4—C5—O2	-178.2 (5)
N1—N2—C1—C2	0.0 (6)	O1—C4—C5—O2	1.9 (8)
N2-C1-C2-C3	0.0 (6)	O3—C4—C5—O4	1.0 (7)
N2—N1—C3—C2	-0.1 (6)	O1—C4—C5—O4	-178.9 (4)
C1-C2-C3-N1	0.1 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A···O1 ⁱ	0.86	1.86	2.709 (5)	170

			supplementary materials		
N2—H2 <i>A</i> ···O1 ⁱⁱ	0.86	1.92	2.715 (5)	153	
O4—H4…O3 ⁱⁱⁱ	0.82	1.95	2.679 (5)	147	

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*.